
The tool of thought for expert programming

Parallel Each
User Guide

Version 1.1

 (companion to Dyalog APL v13.0)

Dyalog Limited

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

tel: +44 (0)1256 830030

fax: +44 (0)1256 830031

email: support@dyalog.com

http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited

Copyright  1982-2011

mailto:support@dyalog.com

Copyright  2011 by Dyalog Limited.

All rights reserved.

Version 1.1.0

First Edition March 2011

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited, Minchens Court, Minchens Lane, Bramley,

Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or fitness for

any particular purpose. Dyalog Limited reserves the right to revise this publication

without notification.

TRADEMARKS:

IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation

Unix is a trademark of X/Open Ltd.

Linux is a trademark of Linus Torvalds.
Windows, Windows NT, Visual Basic and Excel is a trademark of Microsoft Corporation.

Intel and Core are trademarks of Intel Corporation

All other trademarks and copyrights are acknowledged.

 iii

Contents

THE PARALLEL WORKSPACE .. 1
Preamble ... 1
Introduction .. 1

Formal Syntax .. 3
When to Use the Parallel operators .. 4

MANAGING SLAVE PROCESSES ... 6
Initializing Global Data ... 6
Collecting Results .. 7
Creating Slave Processes ... 9
Terminating Slave Processes ... 10
If Everything Stops Working .. 10

DEBUGGING.. 11
Fork.OnError ... 11
Fork.Disabled .. 13
Server-Side Debugging .. 13

REMOTE SLAVES .. 14
Using P.Each on More than One Machine .. 14

TUNING ... 17
Setting the Block Size .. 17
Feedback ... 17
Transferring work ... 19

OPTION REFERENCE ... 20
FUNCTION REFERENCE .. 22

 1

C H A P T E R 1

The Parallel workspace

Preamble
The parallel workspace contains tools which allow Dyalog application programmers

to make use of multiple cores on one or more computers.

Throughout this document the use of the prefix P is synonymous with Parallel.

Where generic attributes and behaviors are described then the reference to P.Each

should be read as a reference to all the parallel operators P.Each, P.OuterP and

P.Rank.

The P.Each (¨), P.OuterP (∘.) and P.Rank (⍤) operators are APL models

of the functionality that may be added to Dyalog APL as primitive operators, once the

problem space is well understood and we have collected some experience from their use

in real applications. The functionality provided by this workspace and these models

should be expected to change in future releases (but since it is entirely coded in APL,

users may continue to use old copies of the workspace at their discretion).

Unix and Linux are not supported in this version of the parallel workspace.

All examples in this document assume (⎕ML ⎕IO)←0 1.

Introduction
In APL, the primitive operator each (¨) is used to execute primitive or user-defined

functions repeatedly on a set of arguments. For example, the following expression

computes the number of co-primes1 of ⍵ that are less than ⍵ for each integer in the

range 1 to 25:

 {+/1=⍵∨⍳⍵}¨⍳25
1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20

1 Wikipedia: two integers a and b are said to be coprime or relatively prime if they

have no common positive factor other than 1 or, equivalently, if their greatest common

divisor is 1.

http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor

 Parallel Each

2

The primitive operator ¨ makes 25 sequential function calls. APL waits for each to

complete before making the next call. P.Each is a user-defined operator which has the

same syntax as the primitive operator but makes use of several APL processes to execute

the calls in parallel. We can replace ¨ by P.Each in the above expression:

)load parallel
c:\...\parallel saved Mon Nov 30 13:17:15 2009

 {+/1=⍵∨⍳⍵} P.Each ⍳25
1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20

The result is the same, but if your machine has multiple “cores”, P.Each will have split

the function calls across a number of “slave processes” – one for each core. The

parallel workspace also supports several machines working together to pool CPU

resources – see the section titled Remote Slaves for more information.

There is some overhead in communicating with the slave tasks – and starting them, if

they are not already running. As a result, the example above probably runs significantly

slower using P.Each, because of the CPU time consumed by the actual function calls.

However, if we do a significant amount of work, we should see an improvement (the

following example executed on a laptop with an Intel Core 2 Duo CPU):

]cputime {+/1=⍵∨⍳⍵} ¨ ⍳10000
Running…
 CPU (avg): 6958
 Elapsed: 6708
]cputime {+/1=⍵∨⍳⍵} P.Each ⍳10000
Running…
 CPU (avg): 32
 Elapsed: 3755

The elapsed time is reduced by nearly 45%: execution is roughly 1.8 times faster using

two cores when making these 10,000 function calls. Note that the reported CPU time

drops to almost nothing, as the function calls are actually performed in slave processes.

The time reported here is the overhead of handing the communications with the slaves

(in this case, roughly 1% of the total CPU time).

]cputime xx←(⍳1000)∘.{(+/⍳⍺)÷+/⍳⍵} (⍳1000)
Running…
CPU (avg): 59592
 Elapsed: 60066
]cputime yy←(⍳1000){(+/⍳⍺)÷+/⍳⍵}P.OuterP (⍳1000)
CPU (avg): 250
 Elapsed: 1583
Running…
 xx≡yy
1

 Parallel Each 3

Formal Syntax
The operators are defined as;

R←{⍺} (⍺⍺ P.Each) ⍵
models R←{⍺} (⍺⍺ ¨) ⍵

⍺ = left argument
⍵ = right argument
⍺⍺ = function, either as a dynamic function or the name of the function to be executed

Example: R←data {⍺+⍵} P.Each data2
 R←data 'Foo' P.Each data2

R←⍺ (⍵⍵ P.OuterP) ⍵
models R←⍺ (∘.⍵⍵) ⍵

⍺ = left argument
⍵ = right argument
⍵⍵ = function, either as a dynamic function or the name of the function to be executed

Example: R←data {⍺+⍵} P.POuterP data2
 R←data 'Foo' P.POuterP data2

R←⍺ (⍺⍺ P.Rank ⍵⍵) ⍵
models R←⍺ (⍺⍺ ⍤ ⍵⍵) ⍵

⍺ = left argument
⍵ = right argument
⍺⍺ = function
⍵⍵ = ranks, controls how the function ⍺⍺ is applied to the cells of the data arguments

Example: R←data {⍺++/⍵} P.Rank (1 2) data2
 R←data 'Foo' P.Rank (1 2) data2

 Parallel Each

4

An additional and but as yet intended only as an internal operator

R←{⍺} (⍺⍺ Fork.dot ⍵⍵) ⍵
models R←{⍺} (⍺⍺.⍵⍵) ⍵

⍺ = left argument
⍵ = right argument
⍺⍺ = refs
⍵⍵ = function

Example: R←data ##.Fork.NSS Fork.Dot {⍺++/⍵} data2
 R←data ##.Fork.NSS Fork.Dot 'Foo' data2

When to Use the Parallel operators
In theory, n cores should perform a job n times as fast as a single core – but in practice

this is rarely the case. In addition to the overhead of managing slave processes and

transmitting arguments and results, the cores need to share resources – in particular

memory and disk storage – and network resources. The fact that disk and network

bandwidth might be a bottleneck probably comes as no surprise, but the impact of

sharing memory can also be significant. In a modern multi-core microprocessor, each

core has some of its own high-speed cache “on chip”, but all the cores share the same

main memory (“RAM”) – and some cache levels can also be shared. If the function

being executed requires frequent access to off-cache data, the cores will compete for

main memory access and all slow down. The bandwidth of main memory access is often

only just enough to satisfy a single core, if that core is in a loop reading memory.

In some cases, adding processors to a task will actually slow it down. Machines have

significantly different performance profiles when there are resource conflicts. You will

need to experiment a little to find optimal settings for each task you need to perform.

To illustrate, consider the following three functions (which you can find in the QA

namespace in the parallel workspace):

 ⍷ i←LoopTest i
[1] :While 0<i←i-1 ⋄ :EndWhile ⍝ No memory, lots of CPU
 ⍷
 ⍷ r←Mixed n
[1] r←n?n
[2] r←+/+\+\⍒⍋⍒⍋r ⍝ Some work, but also memory scans
 ⍷
 ⍷ r←ThrashMemory n
[1] r←+/⍳n ⍝ Lots of generated data, almost no “work”
 ⍷

 Parallel Each 5

These functions illustrate different points on the “parallelizability scale”. Running the

function QA.TestGeneral on your machine runs the functions with a right argument

of (⍳500) for both ¨ and P.Each. It displays a table showing the improvements.

Some variation from one run to the next is to be expected but the perfect score of 2.00

(on a dual core machine) for LoopTest in the following is a freak accident:

2 Tasks / 2 Cores Each P.Each Relative

{#.QA.LoopTest 10000} 2916 1458 2.00

{#.QA.Mixed 100000} 8737 5402 1.62

{#.QA.ThrashMemory 5E6} 7613 6829 1.11

As can be seen above, the speedup is close to 2 for the job which consumes a lot of CPU

and uses little memory – but the function which spends most of its time writing integers

to memory and then adding them up, only speeds up very slightly. In fact, both cores

will be reported as 100% “busy” in all of the above cases – but when executing the last

function, a very large amount of time is spent waiting for memory. In fact, if the system

was trying to run any other tasks at the same time, overall system throughput will have

decreased significantly – so throwing multiple cores at a task can in fact be counter-

productive.

An example of a typical “successful” use of P.Each is a pension calculation

application which computes pensions for hundreds of employees. The calculation for

each employee is completely independent of the rest (except for reading a small amount

of information from a database). Using 8 processes on an Intel machine with 2 “quad”

processors (8 cores), P.Each speeded this application up by a factor of 5. You are

unlikely to achieve higher speedups than this without using more than one physical

machine.

 Parallel Each

6

C H A P T E R 2

Managing Slave Processes

Initializing Global Data
Our first example used a function which did not require any data other than its

arguments. In this case, the user-defined operator can replace the primitive without any

other changes to the application. In the real world, functions often use global data and

store results in global variables. P.Each can also support such functions – but a little

more work is required to ensure that the environment is ready before each function call –

and to collect any results that were saved as “side-effects” in the global variables.

By default, the slave processes are initialized with a copy of the active workspace at the

time of the first use of P.Each. Any global data in the workspace is automatically

available to the slave tasks. If global input data (or code) changes, we can transfer the

necessary data to the slaves using the function P.Set.

Imagine that we have the following simple function, which computes statistics for a row

in a global matrix, stores the results in a global variable. This isn‟t a pretty function, and

it probably doesn‟t do enough work to speed up, but it can be used to illustrate the use of

P.Each with “messy” functions.

 ⍷ r←Stats i;data;avg;max;min;median
[1] r←SLAVEID ⍝ Return the ID of the slave
[2]
[3] data←{⍵[⍋⍵]}DATA[i;] ⍝ Extract row i and sort it
[4] min←1↑data ⋄ max←¯1↑data
[5] median←data[⌈0.5×⍴data] ⋄ avg←(+/data)÷⍴data
[6]
[7] MED_ABOVE_AVG+←median>avg
[8] OUTPUT⍪←i,max,min,median,avg
 ⍷

Before we call the function, we need to set SLAVEID and DATA in each process, and

also initialize the result variables:

 DATA←0.1⍶?1000 10⍴1000 ⍝ 1,000 rows of random data
MED_ABOVE_AVG←0 ⋄ OUTPUT←0 5⍴0

 P.Set 'Stats DATA OUTPUT MED_ABOVE_AVG'
 (⍳P.SlaveCount) P.Set 'SLAVEID'

 Parallel Each 7

The first (monadic) call to P.Set simply copies the current definition of the function

(in case we changed it ) and the value of the three variables into each slave task. A

dyadic call to P.Set requires one element for each active slave in the left argument,

and sets the named variables to different values (so SLAVEID←1 in the first slave and 2

in the second, etc). We can now call our function:

 'Stats' P.Each ⍳6
1 2 1 1 1 2

The result is the SLAVEID of the slave which processed each element. The function

P.CopyState can be used to not only copy data to the slaves, but also replicate all the

current native and/or component file ties in the slaves (obviously, the files must not be

exclusively tied). P.CopyState takes a three-element vector on the right: A matrix of

names to be moved to the slave workspaces, and two Boolean flags which specify

whether to replicate the native and component file ties, respectively. For example:

 P.CopyState (↑'LOG' 'SillySum')0 1

The above copies two objects, and ties the same component files in each slave as are

currently open in the active workspace.

Collecting Results
 We can either use P.Get to retrieve it from each slave:

]display P.Get 'OUTPUT'
┌→───┐
│ ┌→─────────────────────┐ ┌→──────────────────────┐ │
│ ↓1 99.2 4.4 61.4 53.63│ ↓2 85.6 12.48 4 48.34│ │
│ │3 96.8 1 49.6 51.19│ │6 95.1 3.9 52.9 56.99│ │
│ │4 89 10.1 41.3 52.22│ └~──────────────────────┘ │
│ │5 99.9 0.6 57.6 51.66│ │
│ └~─────────────────────┘ │
└∊───┘

 P.Get 'MED_ABOVE_AVG'
 2 1

As we can see from the first column of OUTPUT, the first slave processed rows 1 3 4 5,

and the 2
nd

 slave rows 2 and 6 (which fortunately matches the result that we received

earlier). The first slave encountered two rows where the median was higher than the

average, and the second one.

 Parallel Each

8

The function P.Gather is designed to make it easy to aggregate global variables from

all the slaves and combine them into variables as similar as possible to the result of

running the function in a single process. The default function is ⍪ (catenation on the

first dimension), but a matrix right argument allows specification of a different function

for each variable. In our case, we want to catenate OUTPUT together, but add the “above

average” counters together:

 P.Gather 2 2⍴'OUTPUT' '⍪' 'MED_ABOVE_AVG' '+'

]disp OUTPUT MED_ABOVE_AVG
┌→─────────────────────────────┐
│ ┌→─────────────────────┐ ┌→┐ │
│ ↓1 99.2 4.4 61.4 53.63│ │3│ │
│ │3 96.8 1 49.6 51.19│ └~┘ │
│ │4 89 10.1 41.3 52.22│ │
│ │5 99.9 0.6 57.6 51.66│ │
│ │2 85.6 12.8 48.4 48.34│ │
│ │6 95.1 3.9 52.9 56.99│ │
│ └~─────────────────────┘ │
└∊─────────────────────────────┘

In fact, the right argument to P.Get is simply executed in each slave process:

]disp P.Get '⍴OUTPUT'
┌→────────────┐
│ ┌→──┐ ┌→──┐ │
│ │4 5│ │2 5│ │
│ └~──┘ └~──┘ │
└∊────────────┘

 Parallel Each 9

Creating Slave Processes
By default, the first invocation of P.Each will “fork” the current active workspace as

many times as the machine has processors.

Under „nixes, forking will be done using the “fork” I-beam (4000⌶) to fork the active

session (Unix support is still under development).

Normally, P.Init would be called at the start of the application (or a section that is

intending to make use of P.Each). P.Init accepts the following arguments:

Argument Meaning

'' (empty vector) Fork the active workspace as many times as the machine

has processors (this is the same as calling P.Each

without a call to P.Init first). Note that this cannot be

done if there are threads or open windows (editor or

trace), as ⎕SAVE will fail.

n (integer) Creates n clones of the current workspace.

ref1 ref2

(references to namespaces)
A vector of namespace references will initialize slaves

from the namespaces.

wsname1 wsname2

(workspace names)

A vector of workspace names will initialize slaves using

the named workspace.

Each slave process is a new APL task, started using the executable named in the variable

Fork.Exe (normally dyalogrt) from the workspace in Fork.WS (normally

parallel). If you want to create your own startup workspace, it has to have a latent

expression calling the function Fork.Start. This function starts a Conga server on

the port that it is asked to and waits for work orders and returns results via the Conga

connection.

When a slave is initialized from a named name- or workspace, a namespace called

#.HASH is created as a container for the application, and the namespace or workspace is

materialized within this space. This is NOT done when the current workspace is cloned

– in this case the slave workspace will have the same structure as the current workspace.

If your application needs to be located in the root, you will need to either split the

current workspace or write your own initialization code to load it into the slaves.

 Parallel Each

10

The function P.State displays the state of active processes:

 P.State
 Hosts:
 Machine Port Cores
 Local 2

 Active processes:
 # Host Port State
 1 Local 14400 Idle
 2 Local 14401 Idle

Terminating Slave Processes
The function P.Reset is used to end slave processes. Normally, it is called with a right

argument of 0, causing a shutdown request to be sent to the slave and the closing of the

Conga connection – and finally (after a delay), the termination of the slave process, if it

does not shut down voluntarily. A right argument of 1 can be used if the workspace has

lost track of the slave tasks. P.Reset 1 will terminate all processes running the

named executable (except the one that is running the Reset) – so it will also kill slaves

or other runtime executables which might be performing completely different tasks. It

should only be used as the very last resort2!

If Everything Stops Working
If everything comes to a halt, check whether you have the menu item Threads|Pause on

Error checked. This is the default setting – and you probably want to keep it that way in

order to allow orderly debugging when something fails (if you don‟t, some threads may

continue to run and events may continue to fire as you attempt to debug a problem that

has occurred).

When you finish debugging a problem, you need to select Threads|Resume All Threads

so that all threads start running again. Not that you can bring background threads to a

halt with an error which occurs in “immediate execution”. If you are using the tracer,

you need to select the GREEN resume icon to get all threads running again – the black

one will only resume the current thread.

2 (P.Reset 1) has not been required by the author since the time when the
infrastructure itself was being debugged – and in QA functions to test crash

recovery.

 Parallel Each 11

C H A P T E R 3

Debugging
Note: The behavior described in this section should be considered experimental and is

likely to be improved in the first few releases of the parallel workspace.

Fork.OnError
If errors occur in a function being executed by P.Each, the default behavior is to abort

P.Each as soon as all slaves terminate their current unit of work, and signal the error:

 {7÷⍵}P.Each 1 2 3 0 4 5 6
DOMAIN ERROR
 {7÷⍵}P.Each 1 2 3 0 4 5 6
 ∧

The variable Fork.OnError has a default value of 'Stop', which gives the

behavior described above.

If Fork.OnError←'Continue', units of work which cause errors will be marked

as failed, and execution will continue. When working in this mode, you can use

P.AllOK and P.Errors to find out whether a call was completely successful:

 {7÷⍵} P.Each 1 2 3 0 4 5 6
7 3.5 1.4 1.166666667

 P.AllOK
0

 ⊃∘⍴¨P.Errors
0 0 2 2 2 0 0

]disp ↑¨3⊃P.Errors
┌→─────────────────────────────────┐
│ ┌→──────────────────────────┐ │
│ 11 ↓DOMAIN ERROR │ │
│ │ #.HASH.{7÷⍵}¨(1⊃data)│ │
│ │ ∧ │ │
│ └───────────────────────────┘ │
└∊─────────────────────────────────┘

For each item which failed, P.Errors contains (⎕EN ⎕DM) for the error.

 Parallel Each

12

A couple of things are worth noting:

1. Although only one of the elements in the right argument will cause a

DOMAIN ERROR, slaves are often asked to process more than one element

at a time (using the primitive each within the slave process). The entire

block is flagged as failed. In the above example, the block size was 3. It

may be convenient to force a block size of 1 in this mode, by setting

Fork.BlockSizeRange←1 1.

2. On the server side, everything appears to happen inside the namespace

#.HASH. In the event of a cloned workspace (as above), #.HASH is in

fact a reference to #.

Finally, if Fork.OnError←'Repro', then P.Each will offer to re-execute a failing

block locally, so the failing call can be traced (assuming the necessary code and data is

available). For example:

 ⍷ r←a DIV b
[1] r←a÷b
 ⍷

 7 ('DIV' P.Each)1 2 3 0 4 5 6
PEach call failed, perform local repro? y
Right argument is in omega[ix], left in alpha[ix]
Set r[ix] to correct result and
 →RESUME
DOMAIN ERROR
DIV[1] r←a÷b
 ∧

The failing function is now suspended on the client side, so the environment can be

inspected and appropriate steps taken to resume execution.

 a
7
 b
0
 b←1
 →⎕lc
Resume execution? y
7 3.5 2.333333333 7 1.75 1.4 1.166666667

The remaining blocks will be processed by the slave tasks. Of course, if the function has

side-effects and you were relying on P.Gather, the above process will not quite work

– or at least the result of the P.Gather will be unreliable.

 Parallel Each 13

Fork.Disabled
If you are having problems with the remote execution of a function, you can set

Fork.Disabled←1 in order to temporarily suspend the use of the remote servers, and

execute all function calls locally, even when your application calls P.Each.

Of course, if you have been using dyadic P.Set to distribute different data to slave

processes, or are running code which has global side-effects, this may change the

behavior of your system.

Server-Side Debugging
If you need to do actual debugging in the slave tasks in order to get to the bottom of a

problem, or are having trouble with the parallel infrastructure itself, you should edit the

Fork namespace, set DEBUG←1, and save the workspace so that this value is picked up

when slave processes are started.

Set Fork.Exe←'dyalog' in order to use the full development system rather than the

runtime interpreter when starting run slave tasks. Localise and set ⎕TRAP within your

functions so that they will stop when they encounter an error – for example, ⎕TRAP←0
'S'. With a little care, this should make it possible to at least inspect what is going on

in the slave task. Remember to use “Resume All Threads” when continuing execution

with the slave tasks, or the TCP server thread will remain paused and everything will

grind to a halt.

 Parallel Each

14

C H A P T E R 4

Remote Slaves

Using P.Each on More than One Machine
The parallel workspace makes it possible for several machines to work together and

pool all their available cores, in order to create a “computational grid”. To do this, you

need to start a “relay server” process on each machine (except the “client” machine,

where P.Init is able to launch its own slaves). The relay servers are used to overcome

the limitation of only being able to initiate tasks locally and so their sole purpose is to

launch slave processes on the machine where they are running: once the slaves are

started, a direct connection is opened between the client and the remote slave and the

relay servers are then “out of the loop” until a slave needs to be shut down.

Each relay server must be started and running on their respective machines before P.Init

is used on the client machine. The relay servers must load the parallel workspace,

and be started with command line arguments which let the system know that they are a

relay server and that they should offer relay services to a remote client. For example,

you could start APL using the following command line:

dyalog.exe parallel.dws -ForkPort=5001 -ForkRelay=smeagol

To start a relay server, two command line parameters are required:

Name Example Meaning

ForkRelay Smeagol The ip address of the machine that

should be allowed to request services

ForkPort 5001 The port that the server should listen on

In version 1.1, the existence of the ForkRelay parameter is used to determine that the

process should act as a relay server – but the content is not used. In a future version, the

idea is that incoming connections and work requests will only be accepted from the

address named in this parameter. Mechanisms for running relay servers as “services”

and using secure communications between machines are also envisaged for later

releases.

You need to take the necessary steps to launch relay servers on the machines where they

will be running. The existence of relay servers is declared to P.Init via the 4 column

variable Fork.RemoteServers, of IP addresses and port numbers where the relay

servers can be connected, the number of processes to start on each machine (0 to use all

available cores), and optionally the name of the shared folder as seen by this machine, if

 Parallel Each 15

it needs to be accessed using a different path (or an empty vector to use the contents of

Fork.SharedFolder). If you are going to clone the current workspace, you also

need to set the variable Fork.SharedFolder to the name of a folder which can be

seen by the client and all remotes; it will be used to save the current workspace so that

the remotes can load it. The folder is also used to store all the variables transferred with

P.Set since an audit trail is necessary to assist in the restarting of a disabled slave .

 P.ProcessorCount
2
 Fork.RemoteServers←1 4⍴'bree.dyalog.bramley' 5001 0 ''
 Fork.SharedFolder←'\\fileserver\temp'
 P.Init '' ⍝ Initialize slaves all available cores
 P.SlaveCount
6
 Parallel.State
Hosts:
 Machine Port Cores
 Local 2
 bree.dyalog.bramley 5001 4

 Active processes:
 # Host Port State
 1 Local 14400 Idle
 2 Local 14401 Idle
 3 bree.dyalog.bramley 14400 Idle
 4 bree.dyalog.bramley 14401 Idle
 5 bree.dyalog.bramley 14402 Idle
 6 bree.dyalog.bramley 14403 Idle

Six processors (2 local and 4 remote) shows improvement on the original “co-prime”

function:

]cputime {+/1=⍵∨⍳⍵}¨⍳20000
 CPU (avg): 31138
 Elapsed: 28353

]cputime {+/1=⍵∨⍳⍵} P.Each ⍳20000
 CPU (avg): 31
 Elapsed: 4896

 Parallel Each

16

This problem parallelizes very nicely; it manages to stay within the cache of each of the

6 cores.

 Parallel Each 17

C H A P T E R 5

Tuning

Setting the Block Size
On its first use, P.Each attempts to compute an optimal “unit of work”, which will

keep the communication overhead at a reasonable level, while ensuring that all the

slaves are kept busy for roughly the same amount of time. Initially, each slave is given a

single element of data to work on. When the first slave responds, P.Each uses the

amount of time that this call took to compute the optimal block size. Two variables in

the Fork namespace control this calculation:

Fork.BlockSizeTarget is the number of milliseconds that is considered to be a

reasonable unit of work. By default, this is set to 2000.

The variable Fork.BlockSizeRange sets an upper and lower bound on the number

of items to be computed in each unit of work.

Feedback
The value of the ProgressAfter property (default 3 seconds) determines when

feedback is given back to the client. Although not fully functional in this release, it is

intended that a later release will enhance it to give almost full control over the slaves

while they are processing the data. At the moment the Disable (toggles to Enable)

buttons are crude tools which should really only be used to reset a task before a

complete new run is initiated. The reason is that the actions by the WS clone and the

actions of the P.Set functions are not repeated once the task is restarted. The P.Set now

records the data Set so it is intended to correct this as soon as possible. Once done it

will potentially allow the stopping and starting mid process but this is not a feature yet.

 Parallel Each

18

For this release, the display should be viewed as a feedback panel rather than as a

control panel.

The percentage following the buttons gives the relative efficiency of the slaves running.

It is the number of work units processed by each slave as a percentage of the largest

number processed. This means that slave 2 is working at full efficiency (100%), 4 next

(80%) while 1 and 3 less so (60%).

The number following is the actual number of units of work completed by that slave –

which explains the percentages. 5 is the max number of units processed by any slave.

Each of the percentages gives each slave‟s performance indicator against the highest,

(ie) 100×3÷5=60, 100×5÷5=100, 100×3÷5 and 100×4÷5=80. The second number keeps

increasing as that slave processes more units of work and the sum is the total processed

so far. The percentage gives a gauge of the efficiency and varies between 0 and 100%.

The free/busy word following the numbers indicates if the slave is busy processing data

or whether it is free having completed some work and waiting for the next unit of work

or whether the last available unit of work has been taken.

The green bar gives an approximation of how far the entire process has got. The bar

now implies that about 15% of all the units of work have been processed.

The check box in the bottom right corner can be used to stop the processing completely.

 Parallel Each 19

Transferring work
The value of the Transfer property (default 0) determines what happens when a slave

has completed all the work available to it. If Transfer is 0 then nothing is done and the

client waits until all the slaves have completed their work before returning the result. If

Transfer is set to 1, a setting only really appropriate when remote servers are used, the

work being processed by one of the potentially slower tasks is copied to a free task. The

first task is not stopped and a race to completion ensues. When one of the tasks

completes, the result of the other is discarded. This attempts to ensure that the task is

completed in the fastest time if there are mismatched processors running.

Warning: This attempt at speeding up the process is dangerous and unpredictable is the

process generates a side effect such as a file update or global update to be used in

conjunction with P.Gather since there is a danger of “double counting” some part of the

work. This technique is only applicable in cases where there are no side effects or

where the side effects are directly attributable and so the “double counted” elements can

be eliminated from the final result.

 Parallel Each

20

A P P E N D I X I

Option Reference
The Fork namespace contains a number of variables which control the behavior of

P.Each. The function P.Defaults sets a number of options within the Fork

namespace which handles the forked processes. You can change these variables to

change the behavior of the parallel workspace in various ways.

The available settings are:

 Name & Default Controlled Behaviour
 DRC←##.DRC Pointer to the Conga namespace which should

be used

 IPVersion←'IPv4' IP protocol to use (alternative is 'IPv6')

 DEBUG←0 Set to 0 to reduce the degree of error trapping

when troubleshooting. See Debugging.

 Transfer←0 States whether slow processes will transfer a

copy of their work to faster processes once

these processes are complete.

 WS←'parallel' Name of the workspace to load to create slave

server tasks

 WSPATH←'' Path to WS if different to calling workspace

 Exe←'dyalogrt' Name of the Dyalog executable to use to

create slaves. See Debugging for more details.

 ExePath←'' Alternate Path to Exe, if empty the

environment variable DYALOG is used.

 PortRange←14400 14420 The range of TCP/IP port numbers usable for

slave servers

 nSlaves←¯1 Number of slave processes to start by default.

¯1 means one for each physical processor in

the machine.

 nThreads←0 Max number of processes to actually use

(should be less than or equal to the number of

slaves started). 0 means all.

 Disabled←0 For debugging purposes, set this to 1 to stop

P.Each from using slaves; it will run all

expressions “locally”

 OnError←'Stop' By default, P.Each abandons the entire

execution on the first error (in the same way

as the primitive). Alternatives are „Continue‟

and „Repro‟. See Debugging for more

information.

 Parallel Each 21

 ProgressAfter←3000 How long to wait before producing a progress

bar. A value of 0 switches the progress bar off.

 MaxWait←60000 The maximum time to wait (in milliseconds)

with no response from any slaves before a call

to P.Each should be abandoned and the

slaves “recycled”.

 BlockSizeRange←1
10000

The minimum and maximum block size for

P.Each operations. See Tuning for more

information.

 BlockSizeTarget←2000 The number of milliseconds considered to be a

good “unit of work” when computing the

block size. See Tuning.

 RemoteServers←0 4⍴
'server' 5001 ¯1 ''

An IP address or name and a port number, for

each server (see the section on Remote

Servers)

 SharedFolder←'' The name of a folder which is shared with

remote servers; used to save the current

workspace when “cloning”

 Parallel Each

22

A P P E N D I X I I

FUNCTION REFERENCE
This section lists the functions in the P namespace.

flag←AllOK

Returns 1 if there were no errors encountered during the most recent call to P.Each.

Example: See Errors.

CopyState names [nfiles]
[cfiles]

Copies the named variables, functions or operators to all slave processes. names must

be a matrix of names. nfiles and cfiles are two optional Boolean flags; if set the

control whether the current set of native and component file ties are replicated in each

slave process.

Example:

P.CopyState(↑'Foo' 'Data')1 0

Defaults

Re-initialises all parameters to default settings (see Appendix I).

 Parallel Each 23

errors←Errors

If Fork.OnError←'Continue', this function returns the list of errors encountered

during the last call to Each. For each element in the last call, Errors returns an empty

vector of that element was processed successfully, or a 2-element vector containing

(⎕EN ⎕DM) for elements a slave task failed to process. See Debugging for more details.

Example:

 Fork.OnError←'Continue'
 {1÷⍵}P.Each 1 0 3 4
1 0.3333333333 0.25
 Parallel.AllOK
0
]disp ⍪Parallel.Errors
┌→───┐
↓ ┌⊖┐ │
│ │0│ │
│ └~┘ │
│ ┌→───┐ │
│ │ ┌→──┐ │ │
│ │ 11 │ ┌→───────────┐ ┌→──────────────────────────┐ ┌→─────────────┐ │ │ │
│ │ │ │DOMAIN ERROR│ │ #.HASH.{1÷⍵}¨(1⊃data)│ │ ∧│ │ │ │
│ │ │ └────────────┘ └───────────────────────────┘ └──────────────┘ │ │ │
│ │ └∊──┘ │ │
│ └∊───┘ │
│ ┌⊖┐ │
│ │0│ │
│ └~┘ │
│ ┌⊖┐ │
│ │0│ │
│ └~┘ │
└∊───┘

 Parallel Each

24

Gather names

Collects the global “results” from all the slave processes after using Each, saving the

results in identically named global variables in the active workspace. If the right

argument is a simple vector containing names separates by spaces, or a vector of vectors,

the named variables from each slave workspace are catenated together on the first

dimension using the function ⍪.

The right argument can also be a two-column matrix with variable names in the first

column and aggregation functions in the second column. For example:

P.Gather 3 2⍴'Customers' '⍪','Products' '⍪','Sales' '+'

… would collect the values of three variables from each slave process: Customers and

Products would be catenated together on the 1
st
 dimension, and Sales would be

added together.

Get expr

Executes expr in each slave process, and returns a vector of results with as many

elements as there are slaves. Any errors are trapped and signaled back.

For example:

 Parallel.Get '1÷0'
DOMAIN ERROR
 Parallel.Get'1÷0'
 ∧
]disp Parallel.Get '⎕TS'
┌→──┐
│ ┌→─────────────────────┐ ┌→─────────────────────┐ │
│ │2009 12 5 18 35 50 623│ │2009 12 5 18 35 50 623│ │
│ └~─────────────────────┘ └~─────────────────────┘ │
└∊──┘

 Parallel Each 25

Init spaces

Terminates any existing slave processes, and starts a new set. A slave is started for each

element of the right argument, which defines the “content” that the process will have:

each element can either be a workspace name or a reference to a namespace.

If the right argument includes the namespace #, this is treated as a special case: The

current workspace is saved to a temporary file and the slave(s) copy the workspace on

startup, so they become “clones” of the current process. Other namespaces are passed to

the slave in ⎕OR format.

If the right argument is an empty vector, all available processors will be used and

initialized using # (“cloning” the current workspace). If the right argument is an integer

scalar, that number of processes will be started as clones.

Examples:

 P.Init '' ⍝ Clone workspace as many times as possible
 P.Init P.ProcessorCount ⍝ Clone using local cores only
 P.Init 3⍴⊂⎕WSID ⍝ Make 3 copies of this WS as saved

n←ProcessorCount

Returns the number of processors available in the local machine.

For an example, see P.State.

Reset force

Terminates all current slave processes. If force=0, it asks each slave to shut itself

down. If force=1, it simply terminates all existing processes (except the current

process) which are based on the executable named in the variable Fork.Exe. Forcing a

shutdown should only be done as a last resort.

 Parallel Each

26

[values] Set names

With no left argument, P.Set simply transfers named objects from the current

workspace to all active slave processes. Example:

 P.Set 'MyFn DATA'

When a left argument is provided, there must be as many elements in the left argument

as there are slave processes – and only one variable name in the right argument. The

variable is set to a different value in each slave process. Example:

 (⍳P.SlaveCount) P.Set 'SLAVEID'

The above statement would allow each slave to uniquely identify itself using the global

variable SLAVEID.

n←SlaveCount

Returns the current number of active slave processes. For an example, see State.

State

Returns information about the available hosts and processors:

 P.State
Hosts:
 Machine Port Cores
 Local 2
 bree.dyalog.bramley 5001 4

 Active processes:
 # Host Port State
 1 Local 14400 Idle
 2 Local 14401 Idle
 3 bree.dyalog.bramley 14400 Idle
 4 bree.dyalog.bramley 14401 Idle
 5 bree.dyalog.bramley 14402 Idle
 6 bree.dyalog.bramley 14403 Idle

 P.ProcessorCount ⍝ # Local Processors
2
 P.SlaveCount ⍝ # of Active Slaves
6

